
Chapter 3 — Arithmetic for Computers, ALU Design 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

5th
Edition

Chapter 3

ALU Design

1-Bit ALU with Add, Or, And

• Multiplexor selects between Add, Or, And operations.

Chapter 3 — Arithmetic for Computers, ALU Design 2

32-bit Ripple Carry Adder

• 1-bit ALUs are
connected “in series”
with the carry-out of 1
box going into the
carry-in of the next box.

Incorporating Subtraction

• Must invert bits of B and add a 1 Include an inverter.
• CarryIn for the first bit is 1.
• The CarryIn signal (for the first bit) can be the same as

the Binvert signal.

Chapter 3 — Arithmetic for Computers, ALU Design 3

Incorporating NOR and NAND

Incorporating SLT

• Perform a – b and
check the sign.

• New signal (Less)
that is zero for ALU
boxes 1-31.

• The 31st box has a
unit to detect
overflow and sign –
the sign bit serves as
the Less signal for
the 0th box.

Chapter 3 — Arithmetic for Computers, ALU Design 4

Incorporating BEQ

• Perform a – b
and confirm that
the result is all
zero’s.

Control Lines

Chapter 3 — Arithmetic for Computers, ALU Design 5

Control Lines

• What are the values of
the control lines and
what operations do
they correspond to?

Ai Bn Op
AND 0 0 00
OR 0 0 01
Add 0 0 10
Sub 0 1 10
SLT 0 1 11
NOR 1 1 00

Speed of Ripple Carry

• The carry propagates through every 1-bit box: each 1-bit
box sequentially implements AND and OR – total delay is
the time to go through 64 gates!

• You know that any logic equation can be expressed as the
sum of products – so it should be possible to compute the
result by going through only 2 gates!

• Caveat: need many parallel gates and each gate may
have a very large number of inputs – it is difficult to
efficiently build such large gates, so we’ll find a
compromise:

– Moderate number of gates.
– Moderate number of inputs to each gate.
– Moderate number of sequential gates traversed.

Chapter 3 — Arithmetic for Computers, ALU Design 6

Computing CarryOut

CarryIn1 = b0.CarryIn0 + a0.CarryIn0 + a0.b0
CarryIn2 = b1.CarryIn1 + a1.CarryIn1 + a1.b1

= b1.b0.c0 + b1.a0.c0 + b1.a0.b0 +
a1.b0.c0 + a1.a0.c0 + a1.a0.b0 + a1.b1

…
CarryIn32 = a really large sum of really large products.

• Potentially fast implementation as the result is
computed by going thru just 2 levels of logic –
unfortunately, each gate is enormous and slow.

Generate and Propagate

Equation re-phrased:
Ci+1 = ai.bi + ai.Ci + bi.Ci

= (ai.bi) + (ai + bi).Ci

Stated verbally, the current pair of bits will generate a carry
if they are both 1 and the current pair of bits will propagate
a carry if either is 1

Generate signal = ai.bi
Propagate signal = ai + bi

Therefore, Ci+1 = Gi + Pi . Ci

Chapter 3 — Arithmetic for Computers, ALU Design 7

Generate and Propagate

c1 = g0 + p0.c0
c2 = g1 + p1.c1

= g1 + p1.g0 + p1.p0.c0
c3 = g2 + p2.g1 + p2.p1.g0 + p2.p1.p0.c0
c4 = g3 + p3.g2 + p3.p2.g1 + p3.p2.p1.g0 + p3.p2.p1.p0.c0

Either,
a carry was just generated, or
a carry was generated in the last step and was propagated, or
a carry was generated two steps back and was propagated by both

the next two stages, or
a carry was generated N steps back and was propagated by every

single one of the N next stages

Divide and Conquer

• The equations on the previous slide are still difficult to

implement as logic functions – for the 32nd bit, we must
AND every single propagate bit to determine what

becomes of c0 (among other things).

• Hence, the bits are broken into groups (of 4) and each

group computes its group-generate and group-propagate.
• For example, to add 32 numbers, you can partition the

task as a tree.

.

. . . .

.

Chapter 3 — Arithmetic for Computers, ALU Design 8

P and G for 4-bit Blocks

• Compute P0 and G0 (super-propagate and super-generate) for the
first group of 4 bits (and similarly for other groups of 4 bits)
P0 = p0.p1.p2.p3
G0 = g3 + g2.p3 + g1.p2.p3 + g0.p1.p2.p3

• Carry out of the first group of 4 bits is
C1 = G0 + P0.c0
C2 = G1 + P1.G0 + P1.P0.c0
…

• By having a tree of sub-computations, each AND, OR
gate has few inputs and logic signals have to travel
through a modest set of gates (equal to the height of the
tree).

Example

Add A 0001 1010 0011 0011
and B 1110 0101 1110 1011

g 0000 0000 0010 0011
p 1111 1111 1111 1011

P 1 1 1 0
G 0 0 1 0

C4 = 1

Chapter 3 — Arithmetic for Computers, ALU Design 9

Carry Look-Ahead Adder

• 16-bit Ripple-carry
takes 32 steps.

• This design takes
how many steps?

Review - A MIPS ALU Implementation

§ Overflow bit setting
for signed arithmetic
(add, addi, sub)

+

A1

B1

result1

less

+

A0

B0

result0

less

+

A31

B31

result31

less

. .

.

0

0
set

add/subt op

ovf

zero

. . .

§ Zero detect (slt,
slti,sltiu,sltu,
beq,bne)

Chapter 3 — Arithmetic for Computers, ALU Design 10

Implementation Overview

• We need memory
§ to store instructions
§ to store data
§ for now, let’s make them separate units

• We need registers, ALU, and a whole lot of control logic

• CPU operations common to all instructions:
§ use the program counter (PC) to pull instruction out

of instruction memory
§ read register values

Big Picture

• What is the role of the Add units?
• Explain the inputs to the data memory unit.
• Explain the inputs to the ALU.
• Explain the inputs to the register unit.

Note: multiplexers
not shown.

Chapter 3 — Arithmetic for Computers, ALU Design 11

Clocking Methodology

• Which of the above units need a clock?
• What is being saved (latched) on the rising edge of the

clock? Keep in mind that the latched value remains there
for an entire cycle.

