M(COMPUTER ORGANIZATION AND DESIGN 5th

The Hardware/Software Interface > difion

| Chapter 3

ALU Design

1-Bit ALU with Add, Or, And

» Multiplexor selects between Add, Or, And operations.

Operation
Carryln ‘

[}

a

0

Result

500

CarryOut

Chapter 3 — Arithmetic for Computers, ALU Design

32-bit Ripple Carry Adder

Operation

e 1-bit ALUs are
connected “in series” |
with the carry-out of 1 (l: ll

box going into the bo_| ALUO Resulto
. CarryOut
carry-in of the next box.

Carryln

Y

al —» Carryln
ALU1 Result1
CarryOut

l

a2 | Carryln
ALU2 Result2
CarryOut

l j

a31—-» Carryln
[Result31

b31 ALU31 esu

b1 —»

b2 —»

Incorporating Subtraction

* Must invert bits of B and add a 1 Include an inverter.

+ Carryln for the first bit is 1.

» The Carryln signal (for the first bit) can be the same as
the Binvert signal.

Binvert Operation
Carryln ‘
a N 7\
ARE
—]
?) 1 [H— Result
VT
b — 0
+ 2
1

CarryOut

Chapter 3 — Arithmetic for Computers, ALU Design

Incorporating NOR and NAND

Ainvert Operation
Binvert Carryln
a — 0 {
ﬁ /D
1 —> /
?) 1 Result
‘_
b1 N
s LW
CarryOut
Incorporating SLT
d Perform a - b and Alniferl Oper|at\on
Binvert Carryin

check the sign.
* New signal (Less) 2
that is zero for ALU

[)
—~_J
boxes 1-31. Fj_\ 1
-

!
~

0

5,

|

 The 315t box has a
unit to detect b~ 0
overflow and sign — :
the sign bit serves as __ ,
the Less signal for N~
the 0™ box.

H— Result

_J

Set

Overflow Qverflow
detection

Chapter 3 — Arithmetic for Computers, ALU Design

Incorporating BEQ

Bnegate Operation
Ainvert
* Performa—-b Gl G .
and confirm that T e [—
the result is all ?a"lyo”‘
Zero’s. S

al— Carryln
Y Result1

b1 —| ALU1 1
0—> Less
CarryOut : 20
| |
Yy

a2 —» Carryin

b2 ALU2 Result2
00— Less
CarryOut

!

g i : : Carryln ; ;
L 1
o l ! Result31
a31—-| Carryin oot

b31—{ ALU31 Set
0 —| Less Overflow
-
Control Lines
Bnegate Operation
Ainvert |
YY vy

a0 — Carryln Hestiiid
b0—» ALUD eSOy

Less T
CarryOut

L]

al— Carryln

Result1

b1 —» ALU1 -[
0—> Less -

CarryOut : Zero
T

a2— Carryln

b2 —»| ALU2
0 —>| Less

CarryOut

!

H H : Carryln : ;
i ‘ l ‘ Result31
a31—| Carryln esy

b31— ALU31 Set
0—> Less Overflow

Result2

Chapter 3 — Arithmetic for Computers, ALU Design

Control Lines

* What are the values of _
ALU operation

the control lines and
what operations do {
they correspond to? -

Ai Bn Op Zero
AND 0 0 00 > AL | Resu
OR 0 0 01 Overflow
Add 0 0 10
Sub 0 1 10 b—»
SLT 0 1 1
NOR 1 1 00

CarryOut

Speed of Ripple Carry

* The carry propagates through every 1-bit box: each 1-bit
box sequentially implements AND and OR — total delay is
the time to go through 64 gates!

* You know that any logic equation can be expressed as the
sum of products — so it should be possible to compute the
result by going through only 2 gates!

+ Caveat: need many parallel gates and each gate may
have a very large number of inputs — it is difficult to
efficiently build such large gates, so we'll find a
compromise:

— Moderate number of gates.

— Moderate number of inputs to each gate.
— Moderate number of sequential gates traversed.

Chapter 3 — Arithmetic for Computers, ALU Design

Computing CarryOut

Carryln1 = b0.CarryIn0 + a0.CarryIn0 + a0.b0
Carryln2 = b1.CarryIn1 + a1.Carryln1 + a1.b1
=b1.b0.cO + b1.20.c0 + b1.a0.b0 +
a1.b0.cO + a1.a0.cO0 + a1.a0.b0 + a1.b1

CarryIn32 = a really large sum of really large products.
 Potentially fast implementation as the result is

computed by going thru just 2 levels of logic —
unfortunately, each gate is enormous and slow.

Generate and Propagate

Equation re-phrased:
Ci+1 = ai.bi + ai.Ci + bi.Ci
= (ai.bi) + (ai + bi).Ci

Stated verbally, the current pair of bits will a carry
if they are both 1 and the current pair of bits will
a carry if either is 1

Generate signal = ai.bi
Propagate signal = ai + bi

Therefore, Ci+1 = Gi + Pi . Ci

Chapter 3 — Arithmetic for Computers, ALU Design

Generate and Propagate

c1 =90+ p0.cO
c2=g1+pil.ct
=g1+p1.g0 + p1.p0.cO
c3 =92 +p2.g1 +p2.p1.g0 + p2.p1.p0.cO

A
Either, \\

a carry was just generated, or

a carry was generated in the Igst

a carry was generated two ste
the next two stages, or

a carry was generated N steps back and was propagated by every
single one of the N next stages

L

Divide and Conquer

» The equations on the previous slide are still difficult to
implement as logic functions — for the 32" bit, we must
AND every single propagate bit to determine what
becomes of cO (among other things).

* Hence, the bits are broken into groups (of 4) and each
group computes its group-generate and group-propagate.

* For example, to add 32 numbers, you can partition the
task as a tree.

Chapter 3 — Arithmetic for Computers, ALU Design

P and G for 4-bit Blocks

» Compute PO and GO (super-propagate and super-generate) for the
first group of 4 bits (and similarly for other groups of 4 bits)
PO = p0.p1.p2.p3
G0 =g3 +g2.p3 +g1.p2.p3 + g0.p1.p2.p3

* Carry out of the first group of 4 bits is
C1=G0 + P0.cO
C2=G1+P1.G0 + P1.P0.cO

» By having a tree of sub-computations, each AND, OR
gate has few inputs and logic signals have to travel
through a modest set of gates (equal to the height of the
tree).

Example

Add A 0001 1010 0011 0011
and B 1110 0101 1110 1011
g 0000 0000 0010 0011
p 1M1 1111 1111 1011

P 1 1 1 0
G 0 0 1 0

Chapter 3 — Arithmetic for Computers, ALU Design

Carry Look-Ahead Adder
Carryln
gg—’ Carryln i
- lesult0-3
H H a1l —»|
* 16-bit Ripple-carry &=
b2 —» PO — pi
takes 32 steps. e g
. . c1 Proe Carry-lookahead unit
* This design takes l
a4 —» Carryl
b4 —»| Result4-7
how many steps? s
a6 —» ALU1
b6 —»| Pl —— pi+1
a7 —= G1 [—= gi+1
b7 —»
1702 civ2
a8 —=| Carryln
b8 — Resultg-11
a9 —»
b9 —
al0— ALU2
b10 —| P2 — pi+2
S R A
l_“ ci+3
sg‘* Carryln -
— ult12-15
al3 —»
b13 —=
al4 — ALU3
b14 —| P3 —— pi+3
s:g: G3|— gi+3
ll ci+a
CarryOut

| Review - A MIPS ALU Implementation

| add/subt i3
Jresultg
Zero detect (s1t,
slti,sltiu,sltu,
beq, bne)
result4

>
N i) Zero

Overflow bit setting
for signed arithmetic

fosults (add, addi, sub)
B
0 less ’_D-V ovf
set

Chapter 3 — Arithmetic for Computers, ALU Design

Implementation Overview

* We need memory
to store instructions
to store data
for now, let's make them separate units

* We need registers, ALU, and a whole lot of control logic

* CPU operations common to all instructions:
use the program counter (PC) to pull instruction out
of instruction memory
read register values

Big Picture

Note: multiplexers
not shown.
L Data
Register #
ag Address Instruction Registers Address

) Register # Data
Instruction —»
I memory

memory Register #

Data

* What is the role of the Add units?

* Explain the inputs to the data memory unit.
* Explain the inputs to the ALU.

* Explain the inputs to the register unit.

Chapter 3 — Arithmetic for Computers, ALU Design

10

Clocking Methodology

s

|—> Data
Register #
- Address Instruction Registers Address
. Register # Data
Instruction] b
memory Register # T y
Data

» Which of the above units need a clock?

* What is being saved (latched) on the rising edge of the
clock? Keep in mind that the latched value remains there
for an entire cycle.

Chapter 3 — Arithmetic for Computers, ALU Design

11

